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ABSTRACT 

A new numerical method for calculating the adsorption energy distribution function from retention volume data obtained by 
gas-solid adsorption chromatography is introduced. The method, which considers the ill-posed character of the problem, is applicable 
to all physico-chemical models that describe the local adsorption on one kind of sites. Using Langmuir and Jovanovic local isotherms 
the distribution functions are determined for n-hexane and I-hexene on a glass and for cyclohexane and cyclohexene on two silica gels 
with different pore sizes. 

INTRODUCTION 

In recent years the problem of finding the distri- 
bution of adsorption energies for heterogeneous 
adsorbents has been considered in detail (see refs. 1 
and 2 and references cited therein). The application 
of gas chromatography (GC) has received a great 
deal of attention because the technique is an effective 
method of obtaining information about the interac- 
tion of gases with solid surfaces and can be used to 
collect both temperature- and pressure-dependent 
data [3]. Although both types of data have been used 
for evaluating energetic heterogeneity of adsorbents 
[ 1,4], pressure-dependent GC measurements appear 
especially appropriate for calculating the energy 
distributions of different solids [3,5]. 

There are two possible ways of using GC for 
calculating the distribution of adsorption energies. 

One of these involves the initial calculation of the 
adsorption isotherm from retention measurements 
and then using an analytical or numerical algorithm 
for evaluating the energy distribution function from 
the isotherm. Recently, Guiochon and co-workers 
[6-81 have employed this approach to obtain the 
energy distributions for different alumina samples. 
Also, Roles and Guiochon [9-l l] have reexamined 
the procedure of calculating adsorption isotherms 
and have discussed the precision and accuracy of 
this procedure. The above approach also has been 
used by Jagiello and co-workers [12-141 for studying 
energetic heterogeneity of modified silicas. 
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The other way of using GC measurements for 
calculating the energy distribution functions is based 
on theoretical equations, which relate directly reten- 
tion volume measurement to the energy distribution. 
This later approach has a long history. In 1974 
Rudzinski et al. [ 151 showed that the energy distribu- 
tion function could be expressed as a series, which 
contained derivatives of the retention volume with 
respect to equilibrium pressure. According to this 
formulation, a crude approximation of the energy 
distribution is expressed by the retention volume, 
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whereas a better approximation of this distribution 
is obtained from the first derivative of the retention 
volume with respect to pressure. Rudzinski et al. [ 151 
and later Boudreau and Cooper [16] used the latter 
more refined approach for calculating the energy 
distribution function of different solids. In 1976 
Suprynowicz et al. [ 171 proposed an integral equa- 
tion for expressing the overall retention volume in 
terms of the energy distribution function, which 
characterizes energetic heterogeneity of solid sur- 
faces. These authors [17] and others [18] used this 
integral representation to propose simple analytical 
equations for calculating the energy distribution 
functions of different modified silicas, These works 
are discussed in recent monographs by Paryjczak [3] 
and Jaroniec and Madey [l]. Recently, this integral 
equation was solved analytically for a y-type distri- 
bution in order to model the pressure dependence [5] 
and temperature dependence [4] of retention volume 
on energetically heterogeneous surfaces. 

The integral representation of the overall reten- 
tion volume on energetically heterogeneous surfaces 
gives a direct relationship between GC measure- 
ments and the energy distribution function. There- 
fore, numerical inversion of this integral with respect 
to the energy distribution function seems to be a 
promising approach for evaluating the energetic 
heterogeneity of different solids on the basis of GC 
measurements, which has not been discussed in the 
literature. 

The aim of the current work has been to develop a 
numerical method for inverting the integral equa- 
tion of the retention volume with respect to the 
energy distribution. In addition, problems associ- 
ated with the calculation of the above distribution 
from GC data (e.g., ill-posed nature of this numeri- 
cal problem) have been considered. A regularization 
method [19] has been used for inverting the retention 
integral equation. 

THEORY 

One of the fundamental measurable quantity in 
chromatography is the net specific retention volume, 
V,, which is defined as follows: 

VN = (VR - vhi)h (1) 

In the above VR is the corrected retention volume, 
V, is the void volume, and w is the adsorbent’s mass. 

For a heterogeneous surface consisting of L differ- 
ent types of adsorption sites (I = 1,2, . . . L) the total 
specific retention VOh.UTIe, VN,t, can be represented as 
a sum 

vN,t = i vN.1 (2) 
1=1 

where vN,[ denotes the specific net retention volume 
of the Ith type of adsorption sites. If np is the total 
number of adsorption sites of the Ith type, then a 
new retention volume V& can be introduced, and 
the total net specific retention volume rewritten in 
the following form 

L L 

VN,t = 1 d%& = no 1 f;%,, 
I=1 I=1 

where 

(3) 

(4) 

fi = $/no, no = 5 r$ 
I=1 

In the above no denotes the total number of all 
adsorption sites andfi is the fraction of adsorption 
sites of the Ith type. If the total number of types of 
adsorption sites is large (i.e., L -+ co) then the 
summation in eqn. 3 can be replaced by an integra- 
tion 

VN&) = noi W*(P,EF(E)dE (6) 
&I 

where p is the equilibrium pressure, E is the adsorp- 
tion energy, E, is the minimum adsorption energy, 
and F(E) is the distribution function of E normalized 
to unity: 

7 F(s)d.s = 1 
E, 

(7) 

In order to solve the integral eqn. 6 with respect to 
the energy distribution function F(E) it is necessary 
to assume a model for the local retention, If&. Since 
adsorption determines retention in gas-solid chro- 
matography, an expression for V& can be obtained 
by using the relationship between retention volume 
and the amount adsorbed, n,. For an ideal gas the 
relationship between the total net specific retention 
volume, VN.1, and n, is given by: 
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In the above T is the absolute temperature, R is 
the universal gas constant andjis the compressibility 
correction factor [20]. Eqn. 8 is valid for an adsor- 
bate which fulfils the ideal gas law. Since chromato- 
graphic measurements are usually carried out for 
very small amounts of the adsorbate at relatively 
high temperatures, the mobile phase can be consid- 
ered as an ideal phase. 

For a heterogeneous surface, the total amount 
adsorbed n,, is a simple sum of the amounts 
adsorbed on the Zth type of adsorption sites, nl. If til 
denotes the relative coverage of adsorption sites of 
the Ith type, then the specific retention volume, V&, 
defined by eqn. 3 is related to e1 as follows: 

V&(p) = V&z? =jRT(&$/8p), where & = n&F (9) 

Substitution of eqn. 9 into eqn. 6 gives the 
relationship between the total net specific retention 
volume, VN,t, and the relative surface coverage 
O@,s): 

VN,,(P) =jRTn’ 7 [WmYQ4J+W~ (10) 
&I 

According to eqn. 10 in order to determine F(E) it 
is necessary to know the isotherm 8 = Q,E)=, which 
describes the adsorption of gas molecules on sites 
with adsorption energy E. Since the GC sample’s 
concentration is very small, the local adsorption 
Q,s) can be modelled as a monolayer adsorption 
without lateral interactions. In the current paper, 
two well known models have been considered: the 
Langmuir and Jovanovic models. 

The Langmuir model describes the case when 
adsorbed molecules form a localized monolayer 
without lateral interactions. For this model thermo- 
dynamics gives the following expression for the 
relative surface coverage 8 

KP e@,&) = ~ 
1 + Kp 

(11) 

where K is so-called Langmuir constant given by 

K = K’(T) exp(&/RT) (12) 

In the above P(T) is the pre-exponential factor, 
which is the ratio of the partition function of an 
isolated molecule in the gas and adsorbed phases 
and thus, it reflects changes in the rotational, 
vibrational and translational degrees of freedom 
during the adsorption of an isolated molecule. 

Detailed expressions for Ku are given in a mono- 
graph by Clark [21]. In the current calculations a 
low-temperature approximation for K” was used, 
which according to Ross and Olivier [22] leads to the 
following equation: 

(13) 

where m, is the molecule mass, k is the Boltzmann 
constant and h is the Planck’s constant. 

The second local isotherm, proposed by Jova- 
novic [23], has the following form: 

@(P,E) = 1 - exp(Kp) (14) 

where K is again the Langmuir constant given by 
eqn. 12. It has been shown elsewhere [I] that at 
moderate pressure eqn. 14 reduces to the Langmuir 
eqn. 11. Eqn. 14 has been used in earlier work to 
describe the local retention, V$,, [5]. 

NUMERICAL PROCEDURE FOR DETERMINING THE 

ENERGY DISTRIBUTION FUNCTION FROM RETEN- 

TION DATA 

General considerations 
From a mathematical point of view, eqn. 10 is a 

linear Fredholm integral equation of the first kind, 
which can be written in a more general form as 
follows: 

a 

The integral kernel K(x,y) corresponds to the first 
derivative of the local adsorption isotherm with 
respect to the pressure [afQ,&)/ap], where 0&s) 
represents the physico-chemical model of adsorp- 
tion on sites with the adsorption energy E. The 
function g(y) in eqn. 15 is a known function 
representing the experimentally measured retention 
volumes V,,,@). 

Expressions like eqn. 15 also have been derived 
for the adsorption of gases on energetically hetero- 
geneous surfaces [2,24,25] and in microporous heter- 
ogeneous solids [ 11, overall thermodesorption rates 
[26], gas-solid virial coefficients [27], and liquid- 
solid adsorption excess quantities [28]. In the last 15 
years numerous attempts have been made to calcu- 
late f(x) = F(E) from experimental data, especially 
in the field of gas adsorption where the earliest 
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method, known as the “condensation approxima- 
tion” (CA-method), was introduced by Roginskij in 
1944 [29]. Distribution functions determined by this 
method are often used in other iterative procedures 
as a first approximation [l]. Some authors have 
assumed a-priori the shape of F(E), e.g., Gaussian or 
y-distribution [1,5], and used these functions to 
integrate eqn. 10 analytically for local isotherms like 
the Jovanovic equation. The resulting expressions 
for the overall retention volume contain free param- 
eters, which can be determined by a numerical least 
square fit using the experimental V,,,(p) data. 

In spite of their elegance, every analytical repre- 
sentation has two main disadvantages: (i) the correct 
shape of the distribution function is unknown, and 
(ii) a variety of different analytical distribution 
functions often can be used to describe experimental 
data, which usually are measured in a limited region 
with a insufficient accuracy. 

The second case is known as the so-called numeri- 
cal ill-posedness of the integral eqn. 15, which arrises 
from small changes in VN,&), caused by experimen- 
tal errors, that can influence significantly F(E). 
Likewise, errors generated in numerical calculations 
or errors arising from the quadrature of the integral 
eqn. 10 can lead to a similar situation. Thus, the 
ill-posedness of eqn. 15 is mainly a mathematical 
numerical problem. Additionally, since the integral 
kernel contains a theoretical adsorption isotherm, 
which has only a hypothetical character, the as- 
sumed local adsorption model may not accurately 
represent the experimental observations. 

Recommendations for handling numerical insta- 
ble problems have been made by Tichonov and 
Arsenin [30,31], who introduced the regularization 
method. Subsequently, this method was first applied 
to gas adsorption by House [32] and Merz [33]. A 
short summary of the developments in regulariza- 
tion methods can be found elsewhere [19]. In the 
field of gas-solid adsorption chromatography only 
Roles and Guiochon [6] have mentioned the ill- 
posed nature of the determination of F(E), but their 
approach assumes the shape of the distribution 
function and is not a numerical regularization 
method, which seems to be a better approach to deal 
with ill-posed problems. 

In the current work eqn. 10 will be solved by a 
regularization method based on the singular value 
decomposition developed by Von Szombathely [34], 

which already has been used successfully to calculate 
gas adsorption isotherms on energetically hetero- 
geneous surfaces [ 191. 

REGULARIZATION METHOD 

Each regularization requires discretization of the 
integral equation by a quadrature. The integral 
equation has to be transformed to a system of linear 
equations 

g(y) = j K(x,y)f(x)dx o g = Af 
II 

(16) 

where g = (gi) 1,. ,,, is a vector of m experimental data 
points, gi = g(yi). The vector f = (fi)l . . . . represents 
the unknown function, f(x), with IZ interpolation 
nodes in the integration range [a&]. The (m,n) 
matrix A contains the product of the kernel-values, 
K(xj,yi), and the corresponding quadrature weights. 
Such a linear system of equations is commonly 
solved by minimizing the residual, i.e., the sum of 
least squares: 

Min (IIAf- gll’) (17) 

The idea of regularization is to replace an ill-posed 
problem by a well-behaved one which smoothes the 
resulting function and changes the original condi- 
tion given by eqn. 17 only insignificantly. This can 
be done by addition of a second minimizing term to 
eqn. 17 which stabilizes the numerical solution: 

Min (IlAf- gl12 + YlIWf)I12) (18) 

The regularization parameter y is a measure for 
the weighting of both terms in eqn. 18. The second 
term in eqn. 18 is defined as the norm of the func- 
tion f 

II W(f)112 x ;f2(t)dr (19) 
a 

where t is the integration variable. 
It was shown [19] that this choice additionally 

minimizes the residual and suppresses oscillations in 
the numerical solution. In principle the regulariza- 
tion method still can be improved through inclusion 
of additional restrictions on the solution, e.g., 
restriction of the solution to non-negative values 
(NNLS) [19]. 

The regularization parameter y is usually chosen 
on the basis of a lot of numerical experience. A 
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detailed description of strategies for finding the 
optimal y-value in the case of gas adsorption is given 
in [19]. Usually, to start a high regularization 
parameter, e.g., y = 1, is assumed, which results in a 
strongly smoothed distribution function with a 
residual 11 Af - g ] 1’ generally higher than the one 
calculated from experimental errors. Subsequently y 
is reduced until experimental accuracy is reached. 

In the current work calculations were carried out 
using the program INTEG developed by Von Szom- 
bathely [19]. This regularization program uses sin- 
gular value decomposition (SVD) of matrix A, 
which represents the discretizized operator A in 
eqn. 16. The above algebraic technique leads to 
minimization of numerical errors, fast optimization 
of the result by choosing different regularization 
parameters, and allows very often a judgment about 
the validity of the physico-chemical model of ad- 
sorption leading to the operator in eqn. 16. 

EXPERIMENTAL 

n-Hexane and I-hexene on a porous glass at 374.2 K 
The details of the GC measurements have been 

given previously [17]. A controlled porosity glass 
(i.e., 7% Na20, 23% Bz03 and 70% SiOZ) was 
prepared from sodium borosilicate glass, and had a 
BET specific surface area of 50.5 mz g- ’ and 
a particle size distribution between 0.2-0.3 mm. 
Porosimetric analysis for a similar porous glass [35] 
gave no indications of the presence of micropores in 
these types of adsorbents and allowed determination 
of the pore radius associated with the maximum of 
the pore size distribution equal to 13.5 nm. 

Adsorbates, n-hexane and 1-hexene, were of GC 
purity. The GC measurements were carried out on a 
Chromatron (GCHF 18.3) gas chromatograph with 
a thermal conductivity detector. The experimental 
dependence of the specific retention volume, VN,l on 
the adsorbate pressure p for n-hexane and 1-hexene 
were measured by the peak maxima elution method 
[3]. These measurement conditions were chosen in 
order to minimize dynamic effects. 

Cyclohexane and cyclohexene on wide- and narrow- 
pore silica gel at 400 K 

These experimental data are published in ref. 36. 
The wide-pore silica gel (the particle fraction of 
0.20-0.39 mm) and the narrow-pore silica gel (the 

particle fraction of 0.1550.20 mm) had BET specific 
surface areas as measured by nitrogen adsorption of 
35 m2 g - ’ and 180 m2 g - ‘, respectively. Analysis of 
the pore-size distribution leads to the average pore 
radii of 2 nm for the narrow-pore silica gel and 
14 nm for the wide-pore silica. The bulk density 
measured with helium were 2.1 g cmm3 for the 
wide-pore silica and 2.5 g cme3 for the narrow-pore 
silica gel. The solutes cyclohexane and cyclohexene 
were purified by using a 5 8, molecular sieve. The 
measurements of the V,,&) data were carried out 
with the chromatograph described above. 

RESULTS AND DISCUSSION 

The adsorption energy distribution functions were 
calculated using all of the data points shown in 
Fig. 1. Summarized in Table I are the number of 
data points, the lowest (Pmin) and highest (pmaX) 
pressures and the standard deviation of the tit 
between actual data and calculated data using the 
energy distribution obtained by solving eqn. 10 with 
INTEG and by assuming the Jovanovic equation for 
the local adsorption. 

The numerical determination of F(s) with INTEG 
has the general advantage that there is no limitation 
concerning the choosen local isotherm and thus, 
very complicated (non-analytical) local isotherms 
can in principle be used. As mentioned earlier, in GC 
the sample concentrations are small and the reten- 
tion can be represented by equations associated with 
simple adsorption models as those proposed by 
Langmuir and Jovanovic. To illustrate how the 
particular model influences F(E), Fig. 2 shows the 
distribution functions of the adsorption energy F(E) 
for n-hexane on the porous glass calculated by 
assuming the Langmuir model (eqn. 11) and the 
Jovanovic model (eqn. 14). For the same regulariza- 
tion parameter y = 0.1 the general shape and the 
location of the peak maxima are in close agreement 
for both models. However, since the Jovanovic local 
isotherm seems to have better smoothing properties, 
as can be seen in the energy range about 25 kJ/mol, 
this model was chosen to cary out all additional 
calculations. Further, the choice of the Jovanovic 
equation to represent the local isotherm is conistent 
with approaches often used in the theory of GC [5]. 

The distribution function F(E) also is influenced 
by the pre-exponential factor Ko. The determination 
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wide-pore silica gel 

\ 
cyclohexene 

cyclohexane 

1.0 10.0 
0.00 0.10 0.20 0.30 0.40 0.60 0 00 0.05 0.10 0.15 0 20 

p [lo-UrnI p [lo-3atml 

Fig. 1. Ln VN,t vs. p representation for the experimental systems studied. 

narrow-pore silica gel 

L 

cyclohexene 

of P’ has received considerable attention in the 
literature [1,2,21]. The calculation of K” on the basis 
of pure statistical thermodynamics requires the 
approximation of the partition functions for mole- 
cules in the mobile and stationary phases. Especially 
for organic vapors typically used in GC experiments, 
the theoretical calculation of the partition function 
is often complicated. Simpler methods for deter- 
mining P refer only to simple gases and low 
temperatures. An alternative way of calculating P 

values is from measurements of solute retention at 
different temperatures [35]. 

The influence of the pre-exponential factor K” on 
the distribution funtion F(E) calculated from chro- 
matographic data using INTEG is shown in Fig. 3. 
The solid line represents the distribution function 
for n-hexane on porous glass using P calculated 
according to eqn. 13. The dotted and dashed lines 
show F(E) calculated for values of JP’ differing by 
one order of magnitude from that obtained by 
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TABLE I 

INFORMATION ABOUT EXPERIMENTAL SYSTEMS 

Experimental 
system 

PIlli” 
(atm 103) 

PIlla. 
(atm . 103) 

Number Standard 
of points deviation 
used (eqn. 10) 

n-Hexane/glass 374 0.92 213.3 61 kO.02 
I-Hexene/glass 374 0.14 131.3 45 +0.14 
Cyclohexane/wide-pore silica 400 2.11 462.3 23 kO.02 
Cyclohexane/narrow-pore silica 400 1.82 205.3 19 kO.10 
Cyclohexene/wide-pore silica 400 0.91 268.2 20 kO.04 
Cyclohexene/narrow-pore silica 400 0.91 95.3 18 kO.20 

means of eqn. 13. All functions are very similar in 
shape but they are shifted 2 kJ/mol on the energy 
axis. The same tendency also was observed by calcu- 
lating F(E) from adsorption isotherms for different 
values of P. Since obviously the pre-exponential 
factor did not change the shape of F(s), eqn. 13 was 
used to evaluate K”. 

The energy distributions for both n-hexane and 
I-hexene on porous glass show only one peak. It 
follows from Fig. 4 that the specific interaction of 
I-hexene with the surface of the adsorbent is greater 
than n-hexane. The maximum of the adsorption 

020r-- 
015. 

s- 
$t_ 0.10 - 

1 

I 1 
0 10 20 30 40 50 

E [k.r/naol] 

Fig. 2. Comparison of the distribution functions of the adsorp- 
tion energy F(E) for n-hexane on porous glass calculated with 
INTEG using the Jovanovic (solid line) and Langmuir (dotted 
line) local isotherm models. 

energy distribution is approximately 32 kJ/mol for 
I-hexene which is nearly 10 kJ/mol higher than the 
maximum of F(E) for n-hexane. Jaroniec et al. [5] 
derived an analytical equation for VN,t assuming the 
Jovanovic local isotherm and a y-type distribution 
for F(E). The authors applied this equation to the 
same experimental data and obtained exponential 
type distribution functions with peak maxima at 
23 kJ/mol and 33 kJ/mol, respectively, for n-hexane 
and I-hexene. These values and the difference in the 
adsorption energies are in very good agreement with 
current pure “numerical” results using the regular- 

020d 1 
0 15 - 

J 

0 10 20 30 40 60 

e[kJ/mdl 

Fig. 3. Dependence of the numerically calculated distribution 
function on the value of the pre-exponential factor Kc’ in the 
Jovanovic local isotherm for n-hexane on porous glass. 
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1-hexene 

0 10 20 30 40 50 

a [kJ/mol) 

Fig. 4. Distribution functions of the adsorption energy F(s) for 
n-hexane and I-hexene on controlled porous glass. The calcula- 
tions were carried out with INTEG using the Jovanovic local 
isotherm model and a constant regularization parameter y = 0.01. 

ization method. However, the present method gives 
a better representation of the lower-energy part of 
the F(s)-function, which was not predicted by the 
analytical method. 

Figs. 5 and 6 show the calculated distribution 
functions for cyclohexane and cyclohexene on wide- 

ozol 
0 151 I 

I I I 

0 10 20 30 40 50 

6 [k J/ml ] 

Fig. 5. Distribution functions of the adsorption energy F(s) for 
cyclohexane and cyclohexene on wide-pore silica gel calculated 
with INTEG (for details see Fig. 4). 

0 20 

0 15 

“; 0.10 

5 

l 

3 
k 0.05 

0.00 

0 10 20 30 

t [Id/d 1 

40 50 

Fig. 6. Distribution functions of the adsorption energy F(s) for 
cyclohexane and cyclohexene on narrow-pore silica gel calculated 
with INTEG (for details see Fig. 4). 

and narrow-pore silica gels. For both adsorbents 
cyclohexene was more strongly adsorbed than cyclo- 
hexane. For cyclohexane and cyclohexene on wide- 
pore silica gel the adsorption energies associated 
with the maxima in the distribution F(E) were 18 and 
28 kJ/mol, respectively. However, for the narrow- 
pore adsorbent these values were slightly higher, 21 
and 32 kJ/mol. These results are consistent with 
greater interactions (i.e., about 10-l 1 kJ/mol in the 
adsorption energy) which arises from the double 
bond in cyclohexene. Similarly, this trend is in good 
agreement with the double bond contribution of 
1-hexene in comparison to n-hexane on porous 
glass. Further the current result indicates the ob- 
served x-electrons effects are similar between the 
silica gels and the porous glass. 

The influence of the pore-size on the adsorption 
behavior can be seen by a comparison of the 
distribution functions for cyclohexane on the wide- 
and narrow-pore silicas shown in Fig. 7. For the 
narrow-pore silica gel the distribution function F(E) 
is slightly sharper and the maximum of the distribu- 
tion is shifted approximately 3 kJ/mol to higher 
values of E (4 kJ/mol for cyclohexene). The 3-4 kJ/ 
mol increase in E can be attributed to either the 
presence of fine pores in the narrow-pore silica gel, 
or a difference in surface composition. Although 
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0.00 

0 10 20 30 40 50 

6 I&J/d 1 

Fig. 7. Comparison of the distribution functions F(E) for cyclo- 
hexane on wide- and narrow-pore silica gel (for details see Fig. 4). 

neither of these can be ruled out, it seems more 
possible that pore structure may play a larger role. 

CONCLUSIONS 

The numerical regularization method INTEG is a 
useful procedure for determining the distribution 
function of the adsorption energy from gas chro- 
matographic measurements. A comparison of the 
shapes of F(E) curves calculated for different systems 
provides information about the interaction of solute 
molecules with solid surfaces. Studies of relative 
changes in the F(E) functions should be useful for 
analyzing surface treatments of adsorbents and 
chromatographic packings, e.g., activation and 
chemical modification of adsorbents and stationary 
phases for GC. 
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